SUEZ Water - Water Technologies & Water

PFAS Remediation

PFAS stands for Per- and Poly-Fluoroalkyl Substances. These widely spread, toxic compounds, are estimated to be found in up to 10% of the drinking water supplies in the USA

SUEZ – Water Technologies & Solutions has developed and introduced a range of removal and remediation technologies to address contamination in each of the industrial, military, and municipal applications encountered across the world. Our range of technologies is unmatched in breadth, capability, and ability to be tailored to specific situations, at the lowest possible capital and operating expenditure.

PFAS Remediation

PFAS stands for Per- and Poly-Fluoroalkyl Substances. These widely spread, toxic compounds, are estimated to be found in up to 10% of the drinking water supplies in the USA

SUEZ – Water Technologies & Solutions has developed and introduced a range of removal and remediation technologies to address contamination in each of the industrial, military, and municipal applications encountered across the world. Our range of technologies is unmatched in breadth, capability, and ability to be tailored to specific situations, at the lowest possible capital and operating expenditure.

Overview

PFAS has become one of the top drinking water contaminant issues of the 2010s decade, surpassing other continuing concerns such as Hex Chrom; Perchlorate; Nitrate, Pesticide, MTBE (Methyl tert-butyl ether gasoline additive), Arsenic, PCBs, and endocrine disrupters. The rapidly growing number of scientific citations and articles in the popular press indicate alarm and concern across the United States, Canada, Australia, and the European Union.

In the typical process, our PFAS specialist will visit your site and take a number of water samples, as well as understand your specific situation, water balance, regulatory constraints, discharge needs, process flow, and future plans. Within a few days, we can present a custom-tailored solution for your specific water and situation. Often the solution may be a combination of technologies. In the event of an emergency, we can deliver an off-the-shelf solution, usually within a few days, with fine-tuning to be done later as your time permits.

Download our customer benefits and water data needed fact sheet here.

How it Works

Perfluoro Alkyl substances come in many varieties. While there are an estimated 4700 (and growing) different types of these compounds, the ones of most concern are typically chains of 4-9 carbon atoms, fully saturated with fluorine, terminating in either a sulfonate or carboxylic moiety, or functional group. Some of the most common PFASs and their abbreviations are: Sulfonic Acids/Sulfonates: - PFBS – perfluoro butanesulfonic acid - PFHxS – perfluorohexane sulfonic acid 8 - PFOS - perfluorooctane sulfonic acid Carboxylic Acids: - PFBA – perfluoro butanoic acid - PFHxA - perfluorohexanoic acid - PFHpA – perfluoro heptanoic acid - PFOA – perfluorooctanoic acid - PFNA - perfluorononanoic acid

This class of compounds has been around for over 60 years and was originally developed by organic chemists in search of better performing surfactants in certain applications. The three most common classes of applications are firefighting foams, surface-active agents in consumer products, and surface-active agents in manufacturing. Firefighting foams using PFAS form an excellent film for the suppression of liquid hydrocarbon-fueled fires. The foam coats the liquid fuel and smothers the fire. Consumer products use PFAS for oil resistance in food packaging, and for stain resistance in fabric and leather. Manufacturing applications include emulsifiers, wetting agents, and constituents of coating materials. The dual lipo-phobic and hydrophobic characteristics of the PFAS molecule confer superior performance in these applications.

Substitution of non-PFAS surfactant materials or alternately, a program of careful use, handling, recovery and destruction are warranted. Incineration of the material is the gold standard of treatment of material that is removed from water or sludge. If incineration is not possible, then concentration and a method of permanent sequestration are called for. Although landfill is still allowed in some jurisdictions, this practice is expected to reduce in frequency, in favor of more permanent and less risky alternatives. The key emerging areas of treatment are:

  • legacy sites: Remediation of firefighting sites, Remediation of military sites, Remediation of industrial discharge sites
  • ongoing use cases: Treatment of drinking water that has been contaminated with PFAS, Cleanup of municipal wastewater treatment water, prior to discharge (recycling back into the environment), Cleanup of industrial wastewater prior to being discharged into a receiving body, Treatment of the newer classes of PFASs that have not yet had their safety determined

Products & Services

SUEZ has extensive experience in the supply of equipment, chemicals and service to the remediation, cleanup, and drinking water markets. More specifically, we have applied media, resin and membrane technology to a variety of challenges in producing safe, clean potable water. We have developed and introduced a range of removal and remediation technologies to address contamination in each of the industrial, military, and municipal applications encountered across the world. Our technologies include: